
Docker
Why?

What is Docker?
● It is essentially an suite of tools for application isolation in Linux.
● Docker is a tool for automating the deployment of applications as

portable containers.
● Containers allow you to automate the installation of dependencies and

system configuration.

Images and Containers
● A container is

launched by running
an image.

● An image is an
executable package
that includes
everything needed to
run the application
including runtime,
libraries, and
configuration files.

Containers
● A Docker container is an image with a

read/writeable layer on top of several
read-only layers.

● The middle layers are called
intermediate image and are generated
during Docker build.

● Typically, COPY and RUN commands
translate into a single layer.

Basic Dockerfile
 FROM python

 WORKDIR /app
 COPY . /app
 RUN pip install --trusted-host pypi.python.org -r requirements.txt
 EXPOSE 80
 ENV NAME World

 CMD ["python", "app.py"]

Viewing Layers
docker history <image>

$ docker history expressweb
IMAGE CREATED CREATED BY SIZE
fdd93d9c2c60 2 days ago /bin/sh -c CMD ["npm" "start"] 0 B
e9539311a23e 2 days ago /bin/sh -c EXPOSE 8080/tcp 0 B
995a21532fce 2 days ago /bin/sh -c COPY dir:50ab47bff7 760 B
ecf7275feff3 2 days ago /bin/sh -c npm install 3.439 MB
334d93a151ee 2 days ago /bin/sh -c COPY file:551095e67 265 B
86c81d89b023 2 days ago /bin/sh -c WORKDIR /usr/src/app 0 B
7184cc184ef8 2 days ago /bin/sh -c mkdir -p /usr/src/app 0 B
530c750a346e 2 days ago /bin/sh -c CMD ["node"] 0 B

Building a Docker App
Docker build

Docker image ls

Docker run <imagename>

Good Practices
● Design your containers so they can stopped, destroyed, and rebuilt with

minimal down time and manual intervention.
● Combine RUN, COPY, and ADD operations as these create layers to avoid

creating unnecessary layers.
● Always use the Alpine Image if possible.

○ It is optimized for Docker and minimizes layer depth
● Split long RUN statements into multiple lines to make the Dockerfile more

readable
● Avoid apt-get upgrade

○ We can assume that the base image is reasonably up to date.
● Always do apt update

Run Statements

RUN set -ex \
 ; command 1 \
 ; command 2 \

; final_command

Follow this style

Organize RUN statements to optimize build time
● Order them from less frequently changed to more frequently changed

○ This ensures the build cache is reusable

● Suggested Order:
○ Install build tools
○ Install or update library dependencies
○ Generate or install your applications
○ Set configuration files

Cache Invalidation
$ docker history expressweb
IMAGE CREATED CREATED BY SIZE
fdd93d9c2c60 2 days ago /bin/sh -c CMD ["npm" "start"] 0 B
e9539311a23e 2 days ago /bin/sh -c EXPOSE 8080/tcp 0 B
995a21532fce 2 days ago /bin/sh -c COPY dir:50ab47bff7 760 B
ecf7275feff3 2 days ago /bin/sh -c npm install 3.439 MB
334d93a151ee 2 days ago /bin/sh -c COPY file:551095e67 265 B
86c81d89b023 2 days ago /bin/sh -c WORKDIR /usr/src/app 0 B
7184cc184ef8 2 days ago /bin/sh -c mkdir -p /usr/src/app 0 B
530c750a346e 2 days ago /bin/sh -c CMD ["node"] 0 B

ADD vs COPY
● Copy can only copy files into the

container.
● Prefer copy whenever possible.
● Add has many functions and can

sometimes lead to unexplained
behavior.

● Add is most commonly used for copying
a tarball into a container and unzipping
it.

Extracting a tarball:

Add Method:

ADD resources/jdk-7u79-linux-x64.tar.gz /usr/local/

Copy/Run Method

COPY resources/jdk-7u79-linux-x64.tar.gz /tmp/
RUN tar -zxvf /tmp/jdk-7u79-linux-x64.tar.gz -C /usr/local
RUN rm /tmp/jdk-7u79-linux-x64.tar.gz

Work Directory
The WORKDIR instruction sets the working directory for any RUN, CMD,
ENTRYPOINT, COPY and ADD instructions that follow it in the Dockerfile.

 - For clarity, always use absolute paths.

 - Avoid using RUN cd … ; do something

Shell vs Exec Form
● Shell form: <instruction> command

○ RUN apt-get install python3
CMD echo "Hello world"
ENTRYPOINT echo "Hello world"

● Exec form <instruction> ["executable", "param1", "param2", …]
○ ENV name John Dow

ENTRYPOINT ["/bin/echo", "Hello, $name"]
Output: Hello, $name

○ No shell processing
○ preferred form for cmd and entrypoint

CMD
● CMD instruction should be used to run the software contained by your

image along with any parameters.
● Specifically, use CMD to set the default command and parameters which

will be run by your container.
● Your entry point will still be called.

Three forms of CMD
● CMD ["executable","param1","param2"]

○ preferred form

● CMD ["param1","param2"]
○ sets additional parameters to entry point

● CMD command param1 param2
○ shell form
○ Please avoid

Entrypoint
● The entry point executes the commands to run on the start of the

container.
● Dockers best practices guidelines acknowledge two styles of Entrypoints

for well designed containers.
○ Example in two slides

● Has two forms as well: shell form and exec form
● Do not use entrypoint to build your container

Entrypoint Forms
● ENTRYPOINT ["executable", "param1", "param2"] (exec form, preferred)
● ENTRYPOINT command param1 param2 (shell form)

‘Main Command’ Entrypoint
● Use the entrypoint to set the

images 'main command,' effectively
making the image act as if it is the
binary.

● Okay for very simple, single
purpose, containers.

● Effectively bad design because: you
cannot interactively enter the
container for debugging easily.

Dockerfile:

ENTRYPOINT ["openssl"]

CMD ["--help"]

Entrypoint to Configure Container
 ENTRYPOINT ["docker-entrypoint.sh"]
 CMD ["nginx", "-g", "daemon off;"]
 # docker-entrypoint.sh
 #! /bin/sh
 set -ex
 if ["$1" = "nginx"]; then
 update-nginx-conf.sh
 fi
 exec "${@}"

Entrypoint Practices Explained
 - This way you can use the container interactively without redefining the

entry point.
 - The entry point only configures if you are intending to run the

service,otherwise allow interactive entry.
 - We are using CMD to provide arguments to ENTRYPOINT.
 - Use ENTRYPOINT to execute the arguments passed to it by CMD.
 - Entrypoint should be used only for configuring a container not building

the container.
 - Dockerfiles should specify at least one CMD or ENTRYPOINT commands
 - The last line of a entrypoint should always be exec.

How to write good entry points
● How to write good entry points
● Use good scripting practices
● Keep them simple.
● Don’t try and build the image in your entrypoint. Only configure it.

○ Building stuff should go into the docker file in an RUN clause
● The last line in your entry point should always be to execute your application

or another binary.
○ This makes the process be PID 1 in the container
○ You want your application to be pid 1 because this is where docker were

docker will send all of the unix signals
○ usually exec all params: exec “${@}”

Conclusion

